
International Journal of Theoretical Physics, VoL 35, No. 11, 1996 

Dynamical Interpretation for the Quantum- 
Measurement Projection Postulate 

R. L. Stratonovich 1,2 and V. P. Belavkin ~ 

Received June 11, 1996 

An apparatus model with discrete momentum space suitable for the exact solution 
of the problem is considered. The special Hamiltonian of its interaction with the 
object system under consideration is chosen. In this simple case it is easy to 
illustrate how difficulties in constructing the dynamical interpretation of selective 
collapse can be overcome without any limiting procedure. For this purpose one 
can apply either averaging with respect to a nonquantum parameter or reduce 
the algebra of joint-system operators (i.e., pass from an algebra ,~/of operators 
to a subalgebra ,~0)- The latter procedure implies averaging with respect to 
apparatus quantum variables not belonging to ,~0. 

1. I N T R O D U C T I O N  

In this paper we consider the dynamical interpretation of the selective 
collapse in the one-dimensional case when the momentum of the apparatus has 
a discrete spectrum of eigenvalues. This simplifies the problem of dynamical 
corroboration of the von Neumann projection postulate. The idea to consider 
the case when one of two main conjugate dynamic variables (momentum or 
coordinate) is discrete and to take the apparatus state commuting with discrete 
variable comes from Belavkin (1994). 

The approach to the problem of the selective collapse interpretation is 
quite standard and is well known from the time of von Neumann (1955). The 
collapse of the quantum object state which takes place during measurement of 
an object variable X with discrete spectrum is interpreted with the help of 
interaction between object S and apparatus A (the latter being in the quasiclas- 
sical state) and with the help of the subsequent classical-like measurement 
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of some apparatus variable Y. In our case Y depends on quantum momentum 
/~. Moreover, in this case the evolution operator can exactly realize the 
transformation of the product wave function 

Iq~) ® Lyo) = ~ cjlxj)  ® lyo) ( l)  
J 

for the joint system into the correlated one 

cj Ix j) ® l yj) (2) 
J 

This transformation was proposed by von Neumann for the measurement 
interpretation. Here I xj.} are the eigenfunctions of  X, and l yj) are the eigenfunc- 
tions of Y. In contrast to the von Neumann theory, use of the mixed apparatus 
state or, to be exact, the quasiclassical state is desirable for us because 
eigenvalues { yj} of Ycan only be distinguished from one another macroscopi- 
cally in a quasiclassical state, the appropriate measured operator Y being 
chosen. Moreover, we use an averaging procedure of the apparatus state 
(Stratonovich, 1995). This procedure helps to overcome the difficulties con- 
nected with the dynamic interpretation of the collapse; it makes the apparatus 
state compatible with Y. 

Our goal is to interpret the selective collapse 

1 
Ps ---) - -  Etps El (3) 

Wl 

(wt = Trs psEt) of the density matrix of the quantum object S. According 
to the projection postulate it takes place when the result xt of measurement 
of the operator X = Ej x iE  j becomes known. Here Ej are the orthogonal 
projectors (EiE k = Ei~jk, ~y E i = Is). 

Our treatment is restricted to the following assumptions. 
(i) The coordinate space of the apparatus model is finite, namely it is 

of length L and is curved into itself (like a circumference), the coordinate 
space being, say, the interval [ -L/2 ,  L/2]. This means that the shift q ~ q 
+ a g i v e s q  + a -  L i f L / 2 < q  + a < 3 L / 2 a n d q  + a + L i f - L / 2 > q  
+ a > - 3 L / 2 .  The pointer on a fixed axis (for which q = qo is the angle, 
L = 2"rr) or a box with periodic boundary conditions may serve as examples. 
For an arbitrary L the apparatus momentum has eigenvalues Pk = 2"rrhk/L. 

(ii) The initial apparatus density matrix PA is compatible with momentum 
p, i.e., is diagonal in the momentum representation 

def 

Pkt = (Pk I PA I pt) = wO~kl (4) 

In addition we suppose that 

w ° = 0 at Ikl > m (5) 
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This compatible density matrix is only possible because of  the discrete charac- 
ter of the momentum spectrum. In fact, its continuous variant 

(p ' tpAIp) = w°(p)g(p ' - p) (6) 

is impossible because this operator has infinite trace [if w°(p) is not equal 
to zero everywhere]. 

(iii) The interaction Hamiltonian is of the form 

H~n,(t) = - B  ® ('Y?t + hlA)~(t) (7) 

where ~, h are interaction constants and IA is the apparatus identity operator. 
Of course, the presence of  a delta function on the right-hand side of (7) 
makes the process of interaction somewhat unrealistic. This delta-function 
type of interaction was applied in Belavkin (1995) in the recurrent variant 
for realizing continuous observation. 

The operator 

B = f X) = E bjej =   j)Ej (8) 
J J 

enters the right-hand side of (7), the function f being chosen in such a way 
that all eigenvalues bj of B are multiples of  the quantity a > 0: 

bj = nja (9) 

Here nj are integers that increase with increasing j. The transformation bj = 
f (x j )  is supposed to be nondegenerate. The necessity of (9) will be clear later. 

To obtain the collapse (3) of the object system state, the measurement 
of the variable Y depending on the apparatus momentum will be made. The 
matrix density (4) is very convenient for measuring Y because it commutes 
with p and therefore with Y(p). 

In the general case the selective quantum collapse 

1 
PA "-) W~ PIPAPt (I0) 

of the apparatus state takes place after measurement of Y = Z i yjPj if the 
measurement result y1 becomes known. Here P1 are eigenorthoprojectors of 
Y (Z/Pi  = IA) and w[ = "IrA P/PA- Averaging Zl wt' 151, one finds that the a 
posteriori matrix densities 

1 
~1 = - 7  PtPA Pt (11) 

Wl 
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do not give the a pr ior i  matrix PA in the general case. This means that the 
condition of consistency 

~, w;[h = PA or ~ PtPAPt = PA (12) 
I l 

is not obliged to be met. In our case the projectors Pi defined by 

Pj = oj(p) (13) 

commute with PA and thercforc the consistency condition (12) is met. Thc 
functions a~/(~) are defined by (52). 

As was pointed out in Stratonovich (1995), the quasiclassical collapse 

I 
PA ~ W~ PA * Pl (14) 

obviously meeting the consistency condition, can be applied in some cases. 
Here the operation * is defined with the help of the Wigner transformation 
(27), (29) denoted by °14/'. To be exact, in our case 

A * B = L~W-~{~A/'[A]~/'[B]} (15) 

For projectors (13) we have 

L~/'[a~t(p)] = Ol(Pj ) (16) 

and (14) is equivalent to 

PA ---> (W~)-I~W'-I[VC'[pA]Ot(Pj)] (17) 

or (if we apply °14/" tO both sides of the last formula) 

1 
w(q,  p j )  ---> - -  w(q,  pj)a~t(pj ) (18) 

w; 

This is nothing else but the transition to the conditional distribution, which 
is a well-known nonquantum procedure. Using (32), one can easily see that 
collapse (14), (18) is exactly equivalent to (10) in the simple case (4). Because 
of this fact and because the condition (12) is met in our case, we call the 
measurement of Y = • ykOk(p) classical-like. 

2. THE INITIAL APPARATUS STATE IN OTHER 
REPRESENTATIONS 

Eigenfunctions of momentum/~ corresponding to the eigenvalues Pk = 
21rhk/L are 
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t~k(q) = L -  t/z exp(ipkq/h) (19) 

(the coordinate representation). Using expression on the right-hand side taken 
at various k, we readily can write down the matrix elements 

Vqk = L -  1/9 exp(2~rikq/L) (20) 

of the unitary operator V transforming the,0-representation to the O-representa- 
tion and vice versa. Thus the 0-representation of the density matrix is 

def 
p(q', q) = ( q ' l p a l q )  = ~ Vq,kPklV]q (21) 

kl 

or, due to (4) and (20), 

p(q', q) = L-1 ~ exp[2'rri(q' - q)k/L] w ° (22) 
k 

Therefore the coordinate probability density w°(q) = p(q, q) is uniform, 

w°(q) = 1/L (23) 

Hence we find the coordinate mean (q) = 0 and mean square 

def 1 /'/2 q2 dq = ~ (24) 
0.2 - -  (q2) = Z m 

On the other hand, the momentum mean square is 

pkWk 8"n'2h2L -2  kZw ° (25) 
k= -m k=O 

if wOk = w °. According to (24), (25), we have 

2 _m 
2 2 = "rr2h z ~,  k2w ° (26) 

0-q0-P 3 k=O 

It should be noted that we get 0-q0-p = 0 from (26) if m = 0, i.e., if w ° = 
3ko. This equation is very unusual since it violates the Heisenberg uncertainty 
relation 0-q0-p -- h/2. The possibility of this paradox is substantiated in the 
Appendix. 

When 0-q0-p > >  h, the apparatus is in a quasiclassical state. We will 
suppose that this inequality is valid because the direct macroscopic observa- 
tion of a physical quantity is possible only in this case. Owing to (5) and 
the normalization condition Ek w° = 1, the inequality m > > 1 is a necessary 
condition for 0-q0-p > >  h. For many kinds of distribution, e.g., for the uniform 
one, m > >  1 is also a sufficient condition of a quasiclassical state. 
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Another representation of the apparatus state is the Wigner distribution, 
which in our case takes the form 

= exp - ~ u p j  p q + - ~ , q -  du w(q, pj) Z _u2 

= k ~  ,~_~ exp q ( P k -  P,) A J Pkt (27) 

Here A(~I) = fg~n exp(2~ri'qv) dr, i.e.. 

sin('rr~l) _ Jg,,o at ~ = ~ 
A(~) - ~1  •(-1)"'rr-l/( n + 1/2) at ~ = n + 1/2 (28) 

(n is integer). We denote the transformation (27) by W: 

eW'[pA] = w(q, pj) (29) 

It is easy to check that w(q, Pi) has the properties 

w(q, pj) = p(q, q), f w(q, pj) dq = p~. = w ° (30) Z 
J J 

usual for the Wigner distribution. Moreover the formula 

I L/2 TrA GpA = L j ~  ~Af[G]~,/'[pA] dq (31) 
• = -~o -L/2 

is valid. For the special matrix density (4) we get 

w(q, pj) = w°lL (32) 

3. INTERACTION BETWEEN THE OBJECT SYSTEM S AND 
APPARATUS 

Let Hs be a Hamiltonian acting in the Hilbert space ~ s  of the object 
system S. The apparatus Hamiltonian HA is an operator acting in "~/A. An 
interaction between S and A that lasts a very short time from t = - ¢  to t 
= ~ > 0 is described by the interaction Hamiltonian (7) acting in ~ s  ® ~A, 
B being the S-system operator with discrete eigenvalues (9). Its measurement 
or--what  is equivalentwmeasurement of X is to be interpreted. The total 
Hamiltonian assumes the form 

H(t) = Hs ® IA + Is ® HA -- ~B ® 4a(t) - hB ® IAa(t) (33) 

The state of the joint system S + A at the initial instant to = - ¢  is given 
by the density matrix 
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p( -e )  = Ps ® PA (34) 

In the Schrtidinger picture the density matrix depends on time as 

P(h) = U(h, to)p(to)Ut(h, to) (35) 

where the evolution operator U is given by 

] = H(t) dt (36) U(h, to) ~ exp - ~  0 

Here ~ denotes the time ordering of operators H(t), namely the greater t is, 
the more to the left H(t) stands. We choose tl = e, where e is a very small 
positive number. Then (35) gives 

[i ] 
p(e) = exp ~ B ® (~/0 + hlA) (Ps 

[i ] 
®PA) exp - ~ B ® ( ~ 0  + MA) 

(37) 

owing to (33), (34), and (36). We will use the orthogonal projectors {Ej} 
corresponding to the operator B = Zj bjEj. As is well known, for them 

Is = (38)  
J 

By virtue of (38) we can take ~,i Eips ~jEj instead of Ps in (37) and obtain 

p(e) = .~ exp B ® (~lgl + MA) (EiPsEj ® PA) 

If ] × exp - ~  B ® ("/q + MA) (39) 

But BEi = biEi, EjB = Ejbj, and g(B ® D)(Ej ® Pa) = E~ ® (g(biD)pA) 
for an arbitrary c-function g. Therefore (39) yields 

[i  ] [ ibj(.yO+hlA) ] p(e) = ~ EipsEj ® exp ~ bi('Ygt -1- k/a) pa exp - ~  
ij 

(40) 

Now we use formula (9) and let 

a~ = 2Trh(2m + I)IL (41) 

Then in the apparatus coordinate representation 

(q'lp(e)lq) = ~ EiPsEj exp[i(ni - nj)x] ij 

X exp[27ri(2m + l)(niq' - njq)L -l] p(q', q) (42) 
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with × = ah/h. Substituting (22) into the right-hand side and passing to the 
p-representation, we get 

(p,  I p(~) tp~) = ~ EiPsEjei(ni-nJ)×W°-(2m+ l)ni~r-s-(2m+ |)(ni--nj ) (43) 
ij 

(~kt = 8k-t). This result implies the following Wigner transform: 

~ff'[P(e)]q, pk = ~ EiPsEjexp[i (n i -  nj)x] expf2"rri(2m + l)(ni + n j ) q ]  
ij k /..J~ 

1 X w(q, Pk -- ~(P(2m+l)ni -I- P(2m+l)nj)) (44) 

if all n~ + nj are even. 

4. T H E  APPARATUS P H Y S I C A L  Q U A N T I T Y  T H A T  S H O U L D  
B E  M E A S U R E D  

Let us consider the expression 

def 

R(pr) = (Pr[ p(¢)lpr) 

which in our case, due to (43), assumes the form 

(45) 

R ( p , )  = o Ej Ps Ej w ,_(~ + I ).j (46) 
J 

It is an operator in ~ s  and simultaneously the distribution of  momentum pj. 
We see that correlation between values bj of B and those of/~ exists in (46). 
In fact, the density matrix 

= ~ EjpsEj (47) 0r 

in which B has definite value bj, enters the same term wj~jW°r_(~+l)nj of the 
sum (46) as the distribution W°r-(Zm÷l)nj, which differs from 0 in the range 

-2"tr'hm/L <-- Pr -- 2"rrh(2m + 1)njlL <-- 2"rrhmlL (48) 

[according to (5)], i.e., 

2"trh[(2m + l)ny - m]/L >- Pr <- 2"rrh[(2m + 1)nj + m]lL (49) 

Therefore determining the range to which the momentum belongs signifies 
determining the value of  B and X. Let us denote the range (49) by Sj. Thus 

~w°_~2,,+l),,j at pr E Sj 
w°-~+t)"J = ].O at pr qt Sj 

(50) 
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Various ranges never overlap because nj+t - nj >- 1. Let us introduce the 
enlarged nonoverlapping ranges Sj such that each Sj includes Sj and so that 
the sum ~jSj is equal to the set of all pj , j  = 0, - 1, +2  . . . . .  This enlarging 
can be made in various ways. For example, we can consider the points 

[ + nj+,] (51) sj = 2"rrhL-t (2m + 1) nj -2 tr, 

(the subscript IP means the integral part) lying approximately halfway 
between Sj and Sj+l and define S/as the range s~-l < Pk -< s/. Now we define 
the function 

= ~'1 at p k E  Sj (52) 
Lo otherwise 

From (50), (52) and since Sj is the subset of S/, we have 

wO_~2m+ l~ni~j(pk) = WO_~2m+ l).i~ij (53) 

Let the measured apparatus operator be 

Y(P) = ~ P(2,.+ l).iOj(P) (54) 
J 

(p~+~).~ being the central point of  Sj), or 

Y = ~ j,Oj(p) (55) 
J 

Equation (54) corresponds to inexact measurement of p; the latter one means 
that the number j  of  the range to which p belongs is measured. Note that we 
may set Y = ~jxj~j(p); then we will have ([X ® IA - Is ® y]2) = 0 as 
follows from (62), (46), (53). 

5. S E L E C T I V E  C O L L A P S E  OF THE S-SYSTEM STATE AS A 
RESULT OF M E A S U R I N G  APPARATUS VARIABLE Y 

Now if we measure the physical quantity (54) or (55) and p proves to 
belong to Sl, the collapse 

1, 
p(e) -9  - -  [Is ® ~t(/~)]p(e)[ls ® "Or(p)] (56) 

w i  

(with w; = Tr[ls ® ~t(/~)]p(e)[ls ® ~t(/~)]) takes the form 

1 
(Pr I p(e) I ps) -9 - -  ~(Pr)(P,'t p(¢) I ps)~l(Ps) 

wt 

1 o 
= - -  E i P s E t w s _ ( 2 m +  l)nt~3rs (57) 

w; 
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owing to (43), (53). In fact, applying (53), we have 

~l(Pr)WOr-(2m+ I)ni~r-s-(2m+ l)(ni-nj) 

~--- Wr0_(2m+ |)ni~r-s-(2m+ 1)(ni-nj)~il 

= w°-(2,,,+ l),,:~r-~-(2,,,+ I)O,i-nj)~it 

and 

(58) 

o l)niOt(Ps) = (59) w s - ~ +  w°-~2m+ I)~nlSjt 

This leads to (57). Formula (57) means that the a posteriori state of quantum 
object S is EtpsE/w~ = EtPsE/wt. 

However, the objection arises that it is incorrect to interpret the quantum 
collapse Ps --) ElpsEt/wt by another quantum collapse, namely by (56). In 
fact, the matrix (43) does not commute with Is ® 1~ and Is ® Y and therefore 
a consistency condition of the type (12) is violated. This condition would 
had been met for collapse 

1, 
p(~) --+ - -  p(~) * O~(p) (60) 

Wl 

but now (60) is not justified since it contradicts the collapse (56). 
To overcome the above difficulty, the averaging with respect to some 

quantum or nonquantum variables should be done. There are several lines 
of action and reasoning. 

1. We suppose that the nonquantum parameter X entering the right-hand 
side of (43) is random and uniformly distributed on the interval --rr < X 
-< 'rr. Then averaging the fight-hand side of (43) with respect to × leads to 

<Pr[ P(~-)Ip,) = ~ EjpsEiw°_<2m+l),i~r, (61) 
J 

because the mean value of exp[i(ni - ni)×] is ~ij. The matrix density (61) 
commutes with Is ®/~ and Is ® Y(,O). Therefore the measurement of Y is 
classical-like (see Section 1) and both the quantum collapse (56) and the 
classical one (60) may now be applied to (61). This gives the resulting a 

0 posteriori state EtPsEtwr-(2m+~),~Jwt • Averaging with respect to the appara- 
tus parameter was used in Machida and Namiki (1980) for explaining the 
nonselective collapse. 

2. Another possibility is averaging with respect to some quantum vari- 
ables of the apparatus. We can restrict the operator algebra in which we are 
interested. Let us only consider operator subalgebra M0 generated by all 
operators of the S-system (i.e., operators of the type D ® IA) and by the 
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operator Is ®/~. The analogous type of operator subalgebra (with coordinate 
taken instead of momentum) was considered in Belavkin (1994). Namely the 
algebra of all operators commuting with Q = KI ® ~ was applied there for 
securing the consistency condition in defining nondemolition observation 
continuous in time, the operator Y having both discrete and continuous spec- 
trum. Earlier Araki (1980) used a special subalgebra of operators for obtaining 
nonselective collapse in the limit t --~ ~ for a particular choice of interaction. 

The state functional (functional of mean values) for operators belonging 
to our subalgebra ~t 0 is defined with the help of the operator (45): 

(G) = ~ Trs R(pk)(pklGIpk) (62) 
k 

When we only consider operators from the subalgebra ~0 and use R(pk), the 
classical selective collapse 

! R ( P k )  
w i  

(63) 

analogous to transition to the conditional probability distribution takes place 
provided that the result of the measurement becomes known. According to 
(46), (53) this means the transformation 

l I 0 R ( p k )  ~ - -  EtpsElwk-~m+ l),,+ 
Wl 

(64) 

Summation with respect to the apparatus momentum gives the a posteriori 
state EtpsEt/w~ of the quantum object. 

3. Suppose now that the quantum system interacts with two systems A 
and C, C being another copy of the A-system considered earlier. Let it be 
in the same initial state. Then A + C constitute a new complex apparatus. 
Averaging with respect to the C-system variables, i.e., considering subalgebra 
~o of operators of the type D ® Ic (D being an operator in ~ s  ® ~A) will 
solve the problem. For operators /) = D ® Ic from ~o the functional of 
mean values is (/)) = Zrs+g DpS+A with PS+A = Trc p. 

Now the total Hamiltonian takes the form 

H(t) = H'~ + H~ + H'~ - ~IB"(~" + Q")3(t) (65) 

where H~ = H S ® I A ® I c ,  B" = B ® I A ® I c , ~  " =  Is ® ~ ® I c  = I s@ 
~', Q" = Is ® IA ® Q = Is ® Q', and so on, Q being the coordinate of C, 
i.e., the operator in ~c.  Naturally the matrix 

P = P s ® P A ® P c  (66) 
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serves as the initial density matrix. In this case we have 

[i , ] 
p(~) = ~, EipsEj ® exp ~ "1'b;(O + Q') (PA ® Pc) 

i2 [i ] 
× exp - ~  ~/bj(O' + Q') (67) 

instead of (40). Since ~' commutes with Q' and IA ® PC and Q' commutes 
with PA ® Io  this formula can be written as 

p(e) = ~ EiPsEj ® exp(i~biO/h) PA exp(-i~bigt/h) 
ij 

® exp(i~/biQ/h) Pc exp(- i 'ybjQ/h)  (68) 

If we write the matrices ro = exp(i',lbiQ/h)pc exp(-i 'ybj Q/h) in the coordinate 
representation, we have 

rij(Q', Q) = exp[ih-I'ya(niQ ' - njQ)] pc(Q', Q) (69) 

where, according to (5), 

pc(Q', Q) = L-l ~ exp[2"rri(Q' - Q)k/L] w ° (70) 
k = --m 

[(70) is analogous to (22)]. From (69), (70) we see that setting ~a = 2~rhN/ 
L (N is an integer) and taking the partial trace Trc with respect to the C- 
system (i.e., integrating with respect to Q' = Q) gives 

Trc r O. = ~0 (71) 

Therefore we get from (68) 

Trc p(~) = ~] EjPsEj ® [exp(i~aniO/h) PA exp(-i'~aniEllh)](72) 
J 

and 

(Pk I Trc p(~)Ipt) = ~ EjpsEiw°-(2,,+ l).j~k, (73) 
J 

for N = 2m + 1. Thus, averaging with respect to all C-system quantum 
variables gives the same result as averaging in the nonquantum random 
parameter ×. 

In the first and third ways of reasoning we obtain the a posteriori 
combined system state ~1 s) ® ~t A), where 

~1 s) = EtPsEt/w[, ~1 A) = ~ Ipk)wO-(zm+l)m(pkl 
k 
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This means that the quantum object is in the state E t p s E g w l .  Due to the 
normalization condition, w[ coincides with the probability wl = Trs Etps  

entering (3). So the transformation (3) of the object state takes place. 

APPENDIX. EXPLANATION OF VIOLATION OF THE 
HEISENBERG UNCERTAINTY RELATION IN OUR 
CASE 

The Heisenberg uncertainty relation O'qO'p ~- h /2  is the consequence of 
the well-known operator inequality 

4(AZ)(B 2) >-- (i([A, B]))  z (A.1) 

valid for any self-adjoint operators A and B. Of course, it should be valid in 
our case, 

Let us map our coordinate space onto the real axis in such a way that 
all points xn = Xo + n L  are images of the same coordinate-space point. Here 
n is an arbitrary integer. All functions on the coordinate space should appear 
as periodic functions on the real axis. The momentum operator 13 = - i h  O/ 
Ox generates shifts 

exp(ic13) q~(x) = exp(chO/Ox)  q~(x) = q~(x + hc )  

in the real axis and coordinate space. The normalized eigenfunctions of 13 
have the form 

q~k(x) = L - u z  e x p ( i p k x / h )  (A.2) 

They correspond to eigenvalues p,  = 2"rrhk/L. 

Now the question arises of how to define the function q(M) in the 
coordinate space (M is its point), or, which is equivalent, the function q(x) .  

We cannot set q(x)  = x ,  because q(x)  should be periodic. However, we should 
define q(x )  in such a way that the formula 

def 
qJk(q) = L -  It2 exp[ ipkx (q ) lh]  = L -  I/2 e x p ( i p , q / h )  

which is analogous to (A.2), is valid. For this to be so, q(x)  should only 
differ from x by periodic jumps of magnitude Ax, multiples of L, at some 
points c ,  = Co + nL.  If 0 < c <-- L/2,  we may set 

q(x)  = x - L 'q(x  - c)  at - L / 2  < x <-- L /2  (A.3) 

with rl(~) = (1 + sign ~)/2. For the function (A.3) a n d f i  = - i h  O/Ox we get 

[13, ?7] = - i h  + i h L ~ ( x  - c) at - L / 2  < x <- L/2 (A.4) 
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Averaging (A.4) or, to be exact, the matrix 

[P, O]xx, = - i h [ 1  - L~(x - c)]~(x - x') (A.5) 

with density matrix Px'x of the type (22), we obtain (i[p, 4]) = 0. Therefore 
inequality (A.1) for A = q, B = p gives cr#crp --> 0. So the Heisenberg 
uncertainty relations may be violated in our case. 

The operator (A.5) in the momentum representation is of the form 

(pkl [p, ~] Ipt) = - i h ~ t  + i h ( -  1) k-l (A.6) 

in the limit c ~ L/2. Therefore (p~l [p, q] Ipk) = 0. 
Note that the unusual commutation relation (A.5), (A.6) leads to unusual 

dynamic equations. For example, in the case of an isolated apparatus with 

simple Hamiltonian HA =/~2/(2m0) the usual equation ~¢ = p/m0 is not valid. 
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